

Deep learning con Python. Imparare a implementare algoritmi di apprendimento profondo
Acquistalo
Sinossi
Negli ultimi anni il machine learning ha compiuto passi da gigante, con macchine che ormai raggiungono un livello di accuratezza quasi umana. Dietro questo sviluppo c'è il deep learning: una combinazione di progressi ingegneristici, teoria e best practice che rende possibile applicazioni prima impensabili. Questo manuale accompagna il lettore nel mondo del deep learning attraverso spiegazioni passo passo ed esempi concreti incentrati sul framework Keras. Si parte dai fondamenti delle reti neurali e del machine learning per poi affrontare le applicazioni del deep learning nel campo della visione computerizzata e dell'elaborazione del linguaggio naturale: dalla classificazione delle immagini alla previsione di serie temporali, dall'analisi del sentiment alla generazione di immagini e testi. Con tanti esempi di codice corredati di commenti dettagliati e consigli pratici, questo libro è rivolto a chi ha già esperienza di programmazione con Python e desidera entrare nel mondo degli algoritmi di apprendimento profondo.
- ISBN: 8850335105
- Casa Editrice: Apogeo
- Pagine: 384
- Data di uscita: 05-03-2020
Recensioni
Based on the simple metric of frequency / density of highlighted passage, this text is by far the best book have ever read on subject of machine learning (or most subjects for that matter). The language is clear and easy to follow, even the coding language for that matter - Keras, the machine learni Leggi tutto
This book focuses on hands-on approach to deep learning written by the author of Keras. You'll need another book for theory such as deep learning(Ian, Yoshua, Aaron) if you want to study further (whether good or not, Keras abstracts away internal functions of the neural networks). This books covers
Best practical introduction to deep learning by author of Keras framework and Google researcher. First part of the book gives fundamental understanding and mathematical building blocks needed. Second part introduces different practical applications of deep learning networks: 1. Computer vision with co Leggi tutto
Deep learning is the newest fad in the computer science world. There are really just two reasons for its popularity: it has solved some difficult problems, and there is a lot of money in it. It has worked pretty well for some problems that looked really hard before, like distinguishing pictures of c Leggi tutto
This book is good, provided you do not believe the author's facile claims that it is the only book you need. This book explains almost nothing about how deep learning actually works, and is actually more like a user manual for Keras. Provided you actually want an instruction manual for Keras, it's a Leggi tutto
Always remember that when it comes to markets, past performance is not a good predictor of future returns—looking in the rear-view mirror is a bad way to drive. Machine learning, on the other hand, is applicable to datasets where the past is a good predictor of the future. Really good general intro t Leggi tutto
Great introductory book, that brings a pretty clear practical explanations of DeepLearning and its limitations. As a seasonal ML practitioner, you can still find a couple of interesting tricks. The books also touches more advanced topics like building Variational Autoencoders and Generative Adversaria Leggi tutto
The perfect practical introduction to DL, it doesn't claim to be a mathematical explanation of DL and it doesn't get bogged down in maths. Instead it gives lots of examples and explains in intuitive ways the implementation where necessary.
This book is really excellent! I would actually rate it as 4.5 stars. I have just made it 4 stars because I think some concepts in the last chapters could have been better explained. The first chapters introducing how deep learning works are very informative and didactic as well. I have even incorpo Leggi tutto
Quyển này chính là Dế mèn phiêu lưu kí trong deep learning =,= nhẹ nhàng, dễ hiểu, dễ tưởng tượng. Hiuhiu.
Citazioni
Al momento non ci sono citazioni, inserisci tu la prima!